Sabtu, 13 Agustus 2011

1.1. Apa itu Adobe Photoshop?
Adobe Photoshop adalah software pengolah gambar yang sangat powerfull dengan segala fasilitasnya. Hasil gambar olah dengan Adobe Photoshop ini banyak dilihat di berbagai website, brosur, koran, majalah, dan media lainnya. Untuk download Adobe Photoshop klik di sini.
1.2. Mengenal Area Kerja
Jalankan Adobe Photoshop kemudian pilih menu File -> Open. Kemudian pilih buka gambar apa saja. Sebagai contoh di buka gambar zhaow.jpg yang ada pada CD Tutorial bagian BAB I (lihat gambar 1.1).
Mengenal Area Kerja Adobe Photoshop
Seringkali letak tool-tool (palette) Adobe Photoshop sudah berubah dimodifikasi oleh pengguna sebelumnya. Untuk mengembalikan letak palette ini gunakan menu Windows -> Workspace -> Reset Palette Location.
Area kerja Adobe Photoshop dapat dilihat pada gambar 1.1, yaitu:
A : Menu Bar, berisi perintah utama untuk membuka file, save, mengubah ukuran gambar, filter dan lain-lain.
B : Option, berisi pilihan dari tool yang Anda pilih. Misalnya dipilih kuas/brush, maka ukuran/diameter brush ada di sini.
C : Gambar, menampilkan gambar yang sedang dibuat atau diedit.
D : Pallete Well, cara cepat untuk mengakses palet brushes, tool resets dan Layer Comps. Juga dapat digunakan untuk meletakkan palet yang sering digunakan.
E : Toolbox, berisi tool untuk menyeleksi dan memodifikasi gambar.
F : Palette, berisi jendela-jendela kecil yang di dalamnya terdapat perintah dan pilihan untuk dokumen/gambar yang sedang dikerjakan.
1.3. Praktek Bab 1
1.3.1. Membuka dokumen dan membuat duplikat dokumen
Untuk membuka gambar gunakan menu File -> Open, sedangkan untuk membuat duplikat gambar gunakan menu Image -> Duplicate.
1.3.2. Mengubah ukuran gambar dan kanvas
Jika ukuran gambar diubah, maka gambar akan membesar atau mengecil, lakukan dengan menu Image -> Image Size. Jika ukuran kanvas diubah, maka ukuran gambar tetap, akan ada kertas putih di sekeliling gambar, lakukan dengan menu Image -> Canvas Size.
1.3.3. Mencoba ToolBox
Cobalah tool-tool pada ToolBox, satu persatu akan dibahas pada bab berikutnya. Coba klik kanan pada tool yang memiliki segitiga di bagian kanan bawah untuk memilih tool yang tersembunyi.
1.3.4. Mencerminkan dan Memutar Gambar
Cobalah menu Image -> Rotate Canvas -> Flip Canvas Vertikal, Image -> Rotate Canvas -> Flip Canvas Horisontal. Untuk memutar gambar, pilih menu Image -> Rotate Canvas -> pilih sudut yang dikehendaki.
1.3.5. Undo
Undo digunakan untuk membatalkan perintah terakhir, tekan Alt+Ctrl+Z, atau gunakan pallete history.
1.3.6. Memindahkan gambar ke dokumen lain
Untuk memindahkan gambar gunakan Move Tool.
1.3.7. Save for web
Gunakan menu File -> Save for Web untuk menghasilkan gambar dengan ukuran kecil yang biasa digunakan pada web site.



2.1. Menyeleksi Gambar
Menyeleksi berarti memilih bagian tertentu dari gambar. Dengan seleksi kita dapat mengcopy, mengubah, menggeser, atau menambahkan efek kepada bagian yang terseleksi tanpa mempengaruhi bagian lain.
Ada tiga cara menyeleksi yaitu:
  1. Marquee Tool, yaitu menyeleksi dalam bentuk kotak, elips, row, dan kolom
  2. Lasso Tool, untuk menyeleksi dalam bentuk bebas, poligonal atau kekontrasan gambar (Magnetic Lasso Tool).
  3. Magic Wand Tool, untuk menyeleksi berdasarkan persamaan warna.
Tipe seleksi ada dua (dapat dipilih pada Option Bar), yaitu:
  1. Normal, memiliki pinggiran yang tajam.
  2. Feather, memiliki pinggiran yang halus atau kabur.
2.2. Tool-tool yang lain
Tool pada Adobe Photoshop
2.3. Praktek Bab II
2.3.1. Rectangular Marquee Tool
Gunakan rectangular marquee tool untuk memotong gambar dalam bentuk kotak. Gunakan menu Select -> Transform Selection untuk mengubah seleksi dan menu Select -> Feather untuk mengatur ketajaman pinggiran potongan.
2.3.2. Elliptical Marquee Tool
Digunakan untuk membuat seleksi elips atau lingkaran. Anda dapat menggunakan Select -> Transform Selection (atau klik kanan) untuk mengubah bidang yang mau diseleksi. Gunakan menu Select -> Feather untuk mengatur ketajaman tepi gambar. Gunakan Select -> Inverse untuk membalik seleksi.
2.3.3. Lasso Tool
Seleksi ini digunakan untuk menyeleksi bentuk bebas dengan mouse.
2.3.4. Polygonal Lasso Tool
Polygonal Lasso Tool digunakan untuk menyeleksi gambar yang memiliki tepi garis lurus, misalnya piramida pada gambar 2.5. Jika tombol Alt ditekan maka Polygonal Lasso Tool akan berfungsi seperti Lasso Tool biasa. Contoh gambar hasil seleksi piramida diperkecil dan diletakkan pada sudut kanan bawah.
2.3.5. Magnetic Lasso Tool
Magnetic Lasso Tool penggunaanya cukup mudah, karena dengan tool ini seleksi gambar akan secara otomatis membuat garis seleksi pada gambar yang berwarna kontras.
2.3.6. Magic Wand Tool
Magic wand tool akan menyeleksi gambar yang memiliki warna sama.
Tutorial Adobe Photoshop - Magic Wand tool
2.3.3. Crop Tool
Crop tool digunakan untuk menghilangkan bagian yang tidak diseleksi. Contoh penggunaanya di sini digunakan untuk memperbaiki hasil scan yang miring.
2.3.3. Healing Brush Tool
Healing Brush Tool digunakan untuk memperbaiki gambar pada bagian tertentu. Aktifkan tool ini, kemudian tekan Alt + Klik pada objek pada bagian yang tidak berkeriput, kemudian klik pada bagian yang keriputnya ingin dihilangkan.
2.3.4. Spot Healing Brush Tool
Spot Healing Brush Tool digunakan untuk memperbaiki kerusakan gambar. Di sini Anda tidak perlu menentukan area yang akan digunakan sebagai patokan, karena akan secara otomatis terpilih dari area di sekitarnya. Misalnya digunakan untuk menghilangkan keretakan pada patung seperti pada gambar 2.10.
Tool ini merupakan tool baru pada Adobe Photoshop CS2 yang tidak ada pada versi sebelumnya.
2.3.5. Patch Tool
Patch Tool digunakan untuk memperbaiki gambar. Tool ini dibuat dengan cara membuat selection dengan mouse atau dengan menahan tombol ALT untuk menghasilkan bentuk poligonal. Selanjutnya drag ke daerah yang akan dijadikan patokan perbaikan.
2.3.6. Red Eye Tool
Red Eye Tool digunakan untuk memperbaiki warna merah pada mata.
2.3.7. Clone Stamp Tool
Clone Stamp Tool digunakan untuk membuat duplikat area pada gambar, atau yang disebut cloning. Tekan ALT pada objek yang akan dikloning, kemudian gunakan mouse pada area tempat objek baru mau diletakkan.
2.3.8. Background Eraser Tool
Tool ini digunakan untuk menghapus background yang memiliki kemiripan warna. Misalnya digunakan untuk menghapus background langit pada gambar kupu-kupu.
2.3.9. Magic Eraser Tool
Seperti Background Eraser Tool, tool ini akan menghapus area dengan warna sama, namun efeknya adalah ke seluruh gambar, bukan hanya area yang diklik.
2.3.10. Color Replacement Tool
Color Replacement Tool akan mengubah warna gambar tanpa mengubah bentuk dari gambar tersebut. Tool ini akan secara otomatis hanya mengubah area dengan warna sama menjadi warna lain yang dikehendaki.
2.3.11. Blur, Sharpen, dan Smugde Tool
Blur Tool digunakan untuk mengaburkan area. Misalnya digunakan untuk menghilangkan bintik-bintik pada wajah. Sharpen Tool merupakan kebalikan dari Blur Tool. Dengan Sharpen Tool, gambar akan menjadi lebih tajam. Smugde Tool digunakan untuk mengubah bentuk gambar dengan cara drag mouse.
2.3.12. Dogde, Burn, dan Sponge Tool
Dogde Tool digunakan untuk membuat area menjadi lebih terang. Burn Tool digunakan untuk mempergelap area. Spong Tool digunakan untuk mencerahkan (saturate) atau mengurangi warna (desaturate).



3.1. Sekilas mengenai warna
Warna apapun dapat dinyatakan dalam tiga warna dasar (RGB) yaitu merah, hijau, dan biru. Cara menyatakan warna yang lain adalah dengan mode HSL yaitu Hue, Saturation, dan Lightness. Mode lain adalah CMYK (Cyan, Magenta, Yellow, Black).
Pada bab ini akan dibahas mengenai permainan warna, mulai dari mengatur latar belakang gambar, membuat gradient, mengatur brightness & contrast, dan masih banyak lagi tool-tool yang menarik. Pada subbab selanjutnya Anda dapat langsung praktek dengan didampingi instruktur.
3.2. Paint Bucket Tool
Paint Bucket Tool digunakan untuk mengganti background yang memiliki warna sama atau mirip. Background dapat diganti dengan pattern.
3.3. Gradient Tool
Gradient tool digunakan untuk menghasilkan warna gradasi. Jangan lupa lakukan seleksi terlebih dahulu bagian mana yang akan diisi warna gradasi. Jika tidak, maka seluruh kanvas terisi dengan gradasi.
3.4. Brush Tool
Brush Tool digunakan sebagai kuas dalam mengambar dengan mouse. Atur besar kecilnya brush, hardness, opacity, dan flow. Bush Tool dapat juga bekerja pada mode Air Brush.
3.5. Brightness/Contrast
Brightness digunakan untuk mengatur kecerahan gambar. Contrast digunakan untuk mengatur ketajaman gambar. Gunakan menu Image -> Adjustment -> Brightness/Contrast.
3.6. Level
Level berfungsi mirip dengan Brightness/Contrast namun lebih fleksible karena warna dapat diatur warna gelap, warna menengah, dan warna terang. Level dapat bekerja pada selection atau seluruh kanvas. Gunakan menu Image -> Adjustment -> Level.
3.7. Curves
Curves bekerja seperti level, namun Anda mengatur warna RGB dalam bentuk curva. Gunakan menu Image -> Adjustment -> Curves. Curva dapat diatur otomatis, mode RGB atau diatur sendiri-sendiri untuk tiap-tiap warna.
3.8. Color Balance
Melalui menu Image -> Adjustment -> Color Balance kita dapat mengatur keseimbangan warna.
3.9. Photo Filter
Photo filter digunakan untuk memberikan filter pada gambar. Mirip seperti filter yang diletakkan di depan lensa kamera. Gunakan menu Image -> Adjustment -> Photofilter.
3.10. Replace Color
Replace Color digunakan untuk mengganti warna tertentu dalam gambar, sedangkan warna yang lain tidak ikut berubah. Misalnya untuk mengganti warna apel dengan tanpa mengubah warna background. Gunakan menu Image -> Adjusments -> Replace Color.
3.11. Hue/Saturation
Hue/Saturation digunakan untuk mengganti warna pada keseluruhan gambar/seleksi. Hue adalah warna, sedangkan Saturation adalah tebal/tipisnya warna. Gunakan tool ini melalui Image -> Adjustment -> Hue/Saturation. Perubahan warna dapat diatur pada chanel master, atau tiap-tiap warna.
3.12. Match Color
Match Color akan menyamakan warna gambar source kepada gambar yang akan diubah. Misalnya di sini akan diubah gambar danau3.jpg, menjadi suasana matahati terbit seperti gambar acuan. Gunakan tool ini melalui menu Image -> Adjustment -> Match Color.
Tutorial Adobe Photoshop - Match Color
Tutorial Adobe Photoshop - Match Color



4.1. Horisontal Type Tool
Horisontal Type Tool digunakan untuk membuat teks secar horisontal. Hasil teks dapat dipindahkan dengan Move Tool.
Tutorial Adobe Photoshop - Horisontal Type Tool
4.2. Horisontal Type Mask Tool
Horisontal Type Mask Tool digunakan untuk menyeleksi dalam bentuk teks.
4.3. Pen Tool
Peen Tool digunakan untuk membuat garis lurus dan garis lengkung dalam bentuk vektor. Klik sekali untuk membuat anchor point, kemudian jika kurva telah terbentuk, drag anchor point untuk membuat direction point. Path yang dibuat oleh Pen Tool dapat diubah menjadi selection.
4.4. Rectangle, Ellipse, Poligon, dan Custom Shape Tool
Tool ini berguna untuk menghasilkan bentuk kotak (rectangle), ellips, poligon, dan berbagai macam bentuk lain yang telah disediakan oleh Adobne Photoshop. Bentuk-bentuk tersebut misalnya hati, lampu, not balok, dan lain sebagainya.



5.1. Memahami Layer
Layer adalah lapisan tembus pandang. Bagian yang tidak bergambar pada sebuah layer bersifat transparan. Layer dapat ditumpuk dan diatur susunannya. Dengan menggunakan layer, efek-efek akan berlaku dalam layer tertentu saja, tanpa mengganggu layer yang lain.
5.2. Quick Mask Mode
Quick Mask Mode digunakan untuk menyeleksi dengan menggunakan Brush Tool. Aktifkan tool ini dengan menekan tombol Q pada keyboard atau memilih tool Quick Mask Mode.
Tutorial Adobe Photoshop - Quick Mask Mode
Pada contoh ini, gambar beruang di seleksi dengan menggunakan Brush Tool pada mode quick mask. Setelah gambar beruang terseleksi, kembalikan ke mode normal untuk menghasilkan seleksi gambar beruang.
5.3. Layer Mask
Layer Mask digunakan untuk menyembunyikan bagian tertentu pada layer. Gunakan warna hitam untuk menyembunyikan gambar dan warna putih untuk menampilkan gambar.
Tutorial Adobe Photoshop - Layer Mask
5.4. Layer Style
Layer Style merupakan teknik memberikan efek tertentu pada suatu layer. Pilih tool Add Layer Style yang ada pada sudut kanan bawah pallete.
Tutorial Adobe Photoshop - Layer Style



6.1. Filter Liquify
Filter Liquify dapat mengubah gambar secara langsung dengan menggunakan mouse. Misalnya memperbesar/memperkecil mata, menggeser alis, dan sebagainya. Filter ini dapat digunakan melalui menu Filter -> Liquify.
Tutorial Adobe Photoshop - Filter Liquify
6.2. Filter Vanishing Point
Filter Vanishing Point digunakan untuk meng-klone gambar dalam bentuk perspektif. Filter ini dapat digunakan melalui menu Filter -> Vanishing Point. Area sumber kloning ditentukan dengan menekan Alt + Click. Fitur merupakan fitur baru dalam Adobe Photoshop CS2.
Tutorial Adobe Photoshop - Filter Vanishing Point
6.3. Filter Blur
Filter Blur digunakan untuk mengaburkan gambar. Yang menarik dalam filter ini adalah mengaburnya gambar dapat dibuat secara radial. Gunakan filter ini melalui menu Filter -> Blur.
Tutorial Adobe Photoshop - Filter Blur

Senin, 01 Agustus 2011

Selasa, 26 Juli 2011

Sistem Bilangan dan Aritmatika Biner

a. Tujuan Pembelajaran
Setelah mempelajari uraan materi kegiatan belajar 1 ini diharapkan siswa dapat memahami tentang sistem bilangan dan aritmatika biner.

b. Uraian Materi 6
1) Sistem desimal dan biner
Dalam sistem  bilangan desimal, nilai yang terdapat pada kolom ketiga pada Tabel 11, yaitu A, disebut satuan, kolom kedua yaitu B disebut puluhan, C disebut ratusan, dan seterusnya. Kolom A, B, C menunjukkan kenaikan pada eksponen dengan basis 10 yaitu 100 = 1, 101  = 10, 102 =100.

Dengan cara yang sama, setiap kolom pada sistembilangan biner, yaitu sistem bilangan dengan basis, menunjukkan eksponen dengan basis 2, yaitu 20 = 1, 21 =2, 22 = 4, dan seterusnya.

Tabel 12. Nilai Bilangan Desimal dan Biner


Setiap digit biner disebut bit; bit paling kanan disebut least significant bit (LSB), dan bit paling kiri disebut most significant bit (MSB).

Tabel 13. Daftar Bilangan Desimal dan Bilangan Biner


Untuk membedakan bilangan pada sistem yang berbeda digunakan subskrip. Sebagai contoh 910 menyatakan bilangan sembilan pada sistem bilangan desimal, dan 011012 menunjukkan bilangan biner 01101. Subskrip tersebut sering diabaikan jika sistem bilangan yang dipakai
sudah jelas.

Tabel 14. Contoh Pengubahan Bilangan Biner menjadi

· Konversi Desimal ke Biner
Cara untuk mengubah bilangan desimal ke biner adalah dengan pembagian. Bilangan desimal yang akan diubah secara berturut-turut dibagi 2, dengan memperhatikan sisa pembagiannya. Sisa pembagian akan bernilai 0 atau 1, yang akan membentuk bilangan biner dengan sisa yang terakhir menunjukkan MSBnya.

Sebagai contoh, untuk mengubah 5210 menjadi bilangan biner, diperlukan langkah-langkah berikut :
52 : 2   =   26 sisa 0, LSB
26 : 2   =   13 sisa 0
13 : 2   =     6 sisa 1
6 :  2    =    3 sisa 0
3 : 2     =    1 sisa 1
1 : 2     =    0 sisa 1, MSB

Sehingga bilangan desimal 5210 akan diubah menjadi bilangan biner 110100.
Cara di atas juga bisa digunakan untuk mengubah sistem bilangan yang lain, yaitu oktal atau heksadesimal.

2) Bilangan Oktal
Bilangan Oktal adalah sistem bilangan yang berbasis 8 dan mempunyai delapan simbol bilangan yang berbeda : 0,1,2,….,7.

Teknik pembagian yang berurutan dapat digunakan untuk
mengubah bilangan desimal menjadi bilangan oktal.
Bilangan desimal yang akan diubah secara berturut-turut
dibagi dengan 8 dan sisa pembagiannya harus selalu
dicatat. Sebagai contoh, untuk mengubah bilangan 581910
ke oktal, langkah-langkahnya adalah :
 5819 : 8  = 727,  sisa 3, LSB
 727 :  8   = 90,     sisa 7
 90 :  8    = 11,      sisa 2
 11 :  8    = 1,        sisa 3
 1 : 8       = 0,        sisa 1, MSB
Sehingga 581910 = 132738

· Bilangan Oktal dan Biner
Setiap digit pada bilangan oktal dapat disajikan dengan 3 digit bilangan biner, lihat Tabel 1.5. Untuk
mengubah bilangan oktal ke bilangan biner, setiap digit oktal diubah secara terpisah. Sebagai contoh,
35278 akan diubah sebagai berikut:
38 = 0112, MSB
58 = 1012
28 = 0102
78 = 1112, LSB

Sehingga bilangan oktal 3527 sama dengan bilangan 011 101 010 111.
Sebaliknya, pengubahan dari bilangan biner ke bilangan oktal dilakukan dengan mengelompokkan
setiap tiga digit biner dimulai dari digit paling kanan, LSB. Kemudian, setiap kelompok diubah secara terpisah ke dalam bilangan oktal. Sebagai contoh, bilangan 111100110012 akan dikelompokkan menjadi
11 110 011 001, sehingga.
   112   = 38, MSB
   1102 = 68
  0112 = 38
  0012 = 18, LSB
Jadi, bilangan biner 11110011001 apabila diubah
menjadi bilangan oktal akan diperoleh 36318.

3) Bilangan Hexadesimal
Bilangan heksadesimal, sering disingkat dengan hex, adalah bilangan dengan basis 1610, dan mempunyai 16 simbol yang berbeda, yaitu 0 sampai dengan 15.
Bilangan yang lebih besar dari 1510 memerlukan lebih dari satu digit hex. Kolom heksadesimal menunjukkan eksponen dengan basis 16, yaitu 160 = 1, 161  = 16, 162 = 256, dan
seterusnya. Sebagai contoh :
152B16 = (1 x 163) + (5 x 162) + (2 x 161) + (11 x 160)
 = 1 x 4096 + 5 x 256 + 2 x 16 + 11 x 1
 = 4096 + 1280 + 32 + 11
 = 541910

Sebaliknya, untuk mengubah bilangan desimal menjadi bilangan heksadesimal, dapat dilakukan dengan cara membagi bilangan desimal tersebut dengan 16. Sebagai contoh, untuk mengubah bilangan 340810 menjadi bilangan heksadesimal, dilakukan dengan langkah-langkah sebagai berikut :
 3409/16 = 213, sisa   110 = 116, LSB
 213/16 =   13, sisa   510 = 516
 13/16 =     0, sisa 1310 = D16, MSB
Sehingga, 340910 = D5116.


· Bilangan Hexadesimal dan Biner
Setiap digit pada bilangan heksadesimal dapat disajikan dengan empat buah bit.
Untuk mengubah bilangan heksadesimal menjadi bilangan biner, setiap digit dari bilangan heksadesimal diubah secara terpisah ke dalam empat bit bilangan biner. Sebagai contoh, 2A5C16 dapat diubah ke bilangan biner sebagai berikut.
  216 =  0010, MSB
  A16 = 1010
  516 =  0101
  C16 = 1100, LSB

Sehingga, bilangan heksadesimal 2A5C akan diubah menjaid bilngan biner 0010 1010 0101 1100.
Sebaliknya, bilangan biner dapat diubah menjadi bilangan heksadesimal dengan cara mengelompokkan
setiap empat digit dari bilangan biner tersebut dimulai dari sigit paling kanan. Sebagai contoh, 01001111010111002 dapat dikelompokkan menjadi 0100 1111 0101 1110. Sehingga:
01002 = 416, MSB
11112 = F16
01012 = 516
11102 = E16, LSB

Dengan demikian, bilangan 0100 1111 0101 11102 = 4F5E16.

4) Bilangan Biner Pecahan
Dalam sistem bilangan desimal, bilangan pecahan disajikan dengan menggunakan titik desimal. Digit-digit yang berada di sebelah kiri titik desimal mempunyai nilai eksponen yang semakin besar, dan digit-digit yang berada di sebelah kanan titik desimal mempunyai nilai eksponen yang semakin kecil.
Sehingga
  0.110 = 10-1      = 1/10
  0.1010 = 10-2-  = 1/100
  0.2     =  2 x 0.1  = 2 x 10-1, dan seterusnya.

Cara yang sama juga bisa digunakan untuk menyajikan
bilangan biner pecahan. Sehingga,
  0.12   = 2-1 = ½, dan
  0.012 = 2-2-= ½2  = ¼

Sebagai contoh,
0.1112 = ½ + ¼ + 1/8   = 0.5 + 0.25 + 0.125
   = 0.87510
101.1012 = 4 + 0 + 1+ ½ + 0 + 1/8   = 5 + 0.625
   = 5.62510

Pengubahan bilangan pecahan dari desimal ke biner dapat dilakukan dengan cara mengalihkan bagian pecahan dari bilangan desimal tersebut dengan 2, bagian bulat dari hasil perkalian merupakan pecahan dalam bit biner. Proses perkalian diteruskan pada sisa sebelumnya sampai hasil perkalian sama dengan 1 atau sampai ketelitian yang diinginkan. Bit biner pertama yang diperoleh merupakan MSB dari bilangan biner pecahan. Sebagai contoh, untuk mengubah 0.62510 menjadi bilangan biner dapat dilaksanakan dengan
       0.625 x 2 = 1.25, bagian bulat = 1 (MSB), sisa = 0.25
       0.25 x 2 = 0.5, bagian bulat = 0, sisa = 0.5
       0.5 x 2 = 1.0,  bagian bulat = 1 (LSB), tanpa sisa
            Sehingga, 0.62510  = 0.1012


5) Sistem Bilangan BCD
Sampai saat ini kita hanya melihat pengubahan dari bilangan desimal ke bilangan biner murni. Pada beberapa aplikasi, misalnya sistem berdasar mikroprosesor, seringkali lebih sesuai apabila setiap digit bilangan desimal diubah menjadi 4 digit bilangan biner. Dengan cara ini, suatu bilangan desimal 2 digit akan diubah menjadi dua kelompok empat digit bilangan biner, sehingga keseluruhannya menjadi 8 bit, tidak bergantung pada nilai bilangan desimalnya sendiri. Hasilnya sering disebut sebagai binary-
coded decimal (BCD). Penyandian yang sering digunakan dikenal sebagai sandi 8421 BCD. Selain penyandian 8421 BCD, juga dikenal sejumlah penyandian yang lain.

Contoh
Ubah 25 menjadi bilangan BCD
Penyelesaian
210    =  0010  dan
510    =  0101
Sehingga, 2510  = 0010  0101 BCD

6) Aritmatika Biner

a) Penjumlahan Biner
Penjumlahan bilangan biner serupa dengan penjumlahan pada bilangan desimal. Dua bilangan yang
akan dijumlahkan disusun secara vertikal dan digit-digit yang mempunyai signifikansi sama ditempatkan pada kolom yang sama. Digit-digit ini kemudian dijumlahkan dan jika dijumlahkan lebih besar dari bilangan basisnya (10 untuk desimal, dan 2 untuk  biner), maka ada bilangan yang disimpan. Bilangan yang disimpan ini kemudian dijumlahkan dengan digit di sebelah kirinya, dan seterusnya. Dalam penjumlahan bilangan biner, penyimpanan akan terjadi jika jumlah dari dua digit yang dijumlahkan adalah 2.

Berikut adalah aturan dasar untuk penjumlahan  pada
sistem bilangan biner.
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0, simpan 1

Tabel 14. menunjukkan perbandingan antara penjumlahan pada sistem bilangan desimal dan sistem
bilangan biner, yaitu 82310 + 23810 dan 110012 + 110112.

Tabel 15.  Penjumlahan
a. Penjumlahan desimal
b. Penjumlahan Biner

Marilah kita perhatikan penjumlahan biner dengan lebih seksama.
Kolom satuan  : 1 + 1 = 0, simpan 1
     Kolom 2-an      : 0 + 1 = yang disimpan = 0, simpan 1
     Kolom 4-an       : 0 + 0  yang disimpan = 1
     Kolom 8-an       : 1 + 1 = 0, simpan 1
     Kolom 16-an     : 1 + 1 yang disimpan  = 1, simpan 1
Kolom 32-an     : yang disimpan 1 = 1
Jika lebih dari dua buah digit biner dijumlahkan, ada kemungkinan yang disimpan lebih besar dari 1.

Sebagai contoh,
1 + 1 = 0, simpan 1
1 + 1 + 1 = 1, simpan 1
Contoh berikut menunjukkan penjumlahan dengan
penyimpanan lebih besar dari 1.
 1 + 1 + 1 + 1 = (1 + 1) + (1 + 1)
                      = (0, simpan 1) + (0, simpan 1)
                             = 0, simpan 2;
         1 + 1 + 1 + 1 + 1  = 1 + (1 + 1) + (1 + 1)
                                          = 1, simpan 2
          0 + yang disimpan 2 = 1, simpan 1
          1 + yang disimpan 2 = 0, simpan 2, dan seterusnya.

b) Pengurangan Biner
Pada bagian ini hanya akan ditinjau pengurangan bilangan biner yang memberikan hasil positif. Dalam hal ini, metode yang digunakan adalah sama dengan metode yang digunakan untuk pengurangan pada bilangan desimal. Dalam pengurangan bilangan biner jika perlu dipinjam 1 dari kolom di sebelah kirinya, yaitu kolom yang mempunyai derajat lebih tinggi.
 Aturan umum untuk pengurangan pada bilanagan biner adalah sebagai   berikut :
0 – 0 = 0
 1 – 0 = 1
 1 – 1 = 0
 0 – 1 = 1, pinjam 1
 Contoh : Kurangilah 11112  dengan 01012
 Penyelesaian

Susunlah dua bilangan di atas ke dalam kolom sebagai
berikut :

Secara lebih rinci, dimulai dari LSB (20 = 1)
Kolom 20 1 – 1 = 0
Kolom 21 1 – 0 = 1
Kolom 22 1 – 0 = 0
Kolom 23 1 – 0 = 1
Sehingga, 11112 – 01012 = 10102

Contoh  Kurangilah 11002 dengan 10102
 Penyelesaian

Secara lebih terinci, dimulai dari LSB (20  = 1)
Kolom 20 0 – 0  = 0
Kolom 21 0 – 1  = 1
Dalam kasus ini kita harus meminjam 1 dari bit pada kolom 22. Karena datang  dari kolom 22 , maka  nilainya 2 kali nilai pada kolom 21 .

 Sehingga, 1 (bernilai 22) – 1 (bernilai 21) = 1 (bernilai21).
Bila meminjam 1 dari kolom di sebelah kiri maka berlaku aturan umum 1 – 1 = 1.
Kolom 22  0 – 0 = 0
Nilai  1 dari kolom 2 diubah menjadi nol karena sudah dipinjam seperti yang ditunjukkan dengan anak panah.
Kolom 23 1 – 1 = 0
Sehingga, 11002 – 10102 = 00102




c) Bilangan Biner Bertanda
Sejauh ini kita hanya melihat bilangan biner  positif atau bilangan biner tak bertanda. Sebagai contoh bilangan biner 8-bit dapat mempunyai nilai antara: 0000 00002 = 0010 dan 1111 11112 = 25510 yang semuanya bermilai positif, tanda ‘-‘ diletakkan di sebelah kiri bilangan desimal, misalnya –2510. Dalam
sistem bilangan biner, tanda bilangan (yaitu negatif) juga disandikan dengan cara tertentu yang mudah dikenal dengan sistem digital. Untuk menyatakan bilangan negative pada bilangan biner, bit yang dikenal dengan  bit tanda bilangan (sign bit) ditambah di sebelah kiri MSB. Bilangan biner yang ditulis dengan cara di atas menunjukkan tanda dan besarnya bilangan. Jika bit tanda ditulis 0, maka bilangan tersebut positif, dan jika ditulis 1, bilangan tersebut adalah bilangan negatif.

Pada bilangan biner bertanda yang terdiri dari 8-bit, bit yang paling kiri menunjukkkan besarnya. Perhatikan  contoh berikut :
Bit 7 6 5 4 3 2 1 0
Bit 26 25 24 23 22 21 20
 tanda (64) 932) (16) (8) (4) (2) 1

 Maka, 0110 0111 = +(64+32+4+2+1) = +10310
1101 0101 = -(64+16+4+2) = - 8510
1001 0001 = -(16 + 1) = -1910
0111 1111 = +(64+32+16+8+4+2+1) = +12710
1111 1111 = -(64+32+16+8+4+2+1) = - 12710
1000 0000 = -0 = 0
0000 0000 = +0 = 0

Dari contoh diatas dapat dilihat, bahwa hanya karena tujuh bit  yang menunjukkan besarnya , maka bilangan terkecil dan terbesar yang ditunjukan bilangan biner bertanda yang terdiri dari 8-bit adalah :
     [1]111 11112 = - 12710 dan
     [0]111 11112 = + 12710

Dengan bit dalam kurung menunjukkan bit tanda bilangan.
Secara umum, bilangan biner tak bertanda yang terdiri dari n-bit mempunyai nilai maksimum
M = 2n – 1. Sementara itu, untuk bilangan bertanda yang terdiri dari n-bit mempunyai nilai maksimum
M = 2n-1 – 1. Sehingga, untuk register 8-bit di dalam  mikroprosesor yang menggunakan sistem bilangan bertanda, nilai terbesar yang bisa disimpan dalam register tersebut adalah:
M  = 2(n-1) – 1
 = 2(8-1) – 1
 = 27 - 1
 = 12810 – 1
 = 12710
sehingga mempunyai jangkauan – 12710 sampai +12710.

d) Perkalian
Perkalian pada bilangan biner mempunyai aturan sebagai
berikut :
0 x 0 = 0
1 x 0 = 0
0 x 1 = 0
1 x 1 = 1
Perkalian bilangan biner dapat dilakukan seperti perkalian bilangan desimal. Sebagai contoh, untuk mengalikan 11102 = 1410 dengan 11012 = 1310 langkah-langkah yang harus ditempuh adalah :
Perkalian juga bisa dilakukan dengan menambah bilangan yang dikalikan ke bilangan itu sendiri sebanyak bilangan pengali.

Contoh di atas, hasil yang sama akan diperoleh dengan menambahkan 1112 ke bilangan itu senidiri sebanyak 11012 atau tiga belas kali.

e) Pembagian
Pembagian pada sistem bilangan biner dapat dilakukan sama seperti contoh pembagian pada sistem
bilangan desimal. Sebagai contoh, untuk membagi 110011 (disebut bilangan yang dibagi) dengan 1001 (disebut pembagi), langkah-langkah berikut perlu dilakukan.
  

Sehingga hasilnya adalah 1012, dan sisa pembagian adalah 1102.

Pembagian bisa juga dilakukan  dengan cara menjumlahkan secara berulang kali bilangan pembagi dengan bilangan itu sendiri sampai jumlahnya sama dengan bilangan  yang dibagi atau setelah sisa pembagian yang diperoleh lebih kecil dari bilangan pembagi.

c. Rangkuman 6
1) Bilangan desimal adalah sistem bilangan yang berbasis 10 dan mempunyai sembilan simbol bilangan yang berbeda :0,1,2,3,4...,9.
2) Bilangan biner adalah sistem bilangan yang berbasis 2 dan mempunyai 2 simbol bilangan yang berbeda: 0 dan 1
3) Bilangan octal adalah sistem bilangan yang berbasis 8 dan mempunyai 8 simbol bilangan yang berbeda: 0,1,2,3,...,7
4) Bilangan hexa desimal adalah sistem bilangan yang berbasis 16 dan mempunyai simbol bilangan yang berbeda: 0,1,2,3,...9,a,b,c,d,e,f.
5) Setiap digit biner disebut bit; bit paling kanan disebut least significant bit (lsb), dan bit paling kiri disebut mostsignificant bit (msb).

Sabtu, 23 Juli 2011

PENGERTIAN DASAR DIGITAL

Pengertian Dasar Apakah yang dimaksud dengan "digital"?. Suatu pertanyaan yang logis dari para pembaca yang ingin mengetahui atau mempelajari pengetahuan tentang Teknik Digital. Untuk menjawab pertanyaan diatas akan lebih mudah dipahami kalau kita ulas tentang perbedaan antara besaran analog dengan besaran digital. Sebagai gambaran sementara kita dapat melihat jam sebagai alat ukur waktu dimana tampilannya ditentukan oleh jarum penunjuk yang gerakannya selalu berubah secara kontinyu, jam seperti ini dapat disebut jam analog. Disisi lain kita juga melihat jam yang tampilannya berupa angka-angka, hal seperti ini dapat dikatakan jam digital.

1.1. Besaran Analog
Pada sistim analog sinyal keluarannya berubah setiap sa'at secara kontinyu sesuai dengan sinyal masukannya, sebagai contoh pengaruh temperatur terhadap tegangan seperti (gambar 1.1) dibawah ini.


V dan A keduanya menunjukkan sinyal analog, dimana setiap titik mempunyai perubahan yang sama.





1.2 Besaran Digital
Pada sistim digital sinyal keluarannya berupa diskrit-diskrit yang berubah secara melompat-lompat yang tergantung dari sinyal masukannya, sebagai contoh sistim transfer dari tegangan analog ke tegangan digital (gambar 1.2).

1.3. Keadaan Logika
Besaran digital mempunyai dua, tiga atau lebih keadaan logika, seperti terlihat pada (gambar 1.3), dimana menunjukkan 3 kemungkinan keadaan logika, yaitu ; 10 v, 5 V dan 0 V


Tapi pada dasarnya peralatan-peralatan digital hapir selalu menggunakan 2 keadaan, misalnya pada pulsa-pulsa listrik yang mempunyai keadaan ada atau tidak ada pulsa. Contoh lain pada bentuk tegangan listrik yang mempunyai 2 harga, yaitu harga atas atau harga bawah dengan toleransi pada harga-harga tersebut seperti terlihat pada (gambar 1.4)

Tegangan 4,5 V - 5,5 v dapat dikatakan kondisi H (High) atau logik “1”, sedangkan tegangan 0 V - 0,8 V adalah kondisi L (Low) atau logik”0”,sedangkan daerah 0,8 V - 4,5 V tidak di kondisikan. 1.4.

Perbandingan Sinyal Analog dengan Sinyal Digital

Perbandingan sinyal analog dengan sinyal digital dapat diamati dari besaran tegangan pada sumber tegangan searah Tegangan searah berupa sinyal analog mempunyai nilai atau harga berupa besaran tegangan yang mempunyai harga batas maksimum dan minimum misalnya + 10 volt, sedangkan besaran tegangan searah pada sinyal digital mempunyai nilai atau harga yang pasti, mislalnya + 10 volt, 0 volt dan - 10 volt. Untuk lebih jelasnya dapat dilihat gambar rangkaian listrik dibawah ini (gambar 1.5).



Harga besaran analog mempunyai daerah batas maksimum dan minimum, sedangkan pada harga besaran digital hanya mempunyai 2 kemungkinan keadaan seperti :
•Skelar tertutup atau sakelar terbuka.
•Transistor menghantar atau transistor menyumbat
•Tegangan Hight atau tegangan Low.

1.6 








                                                              Penggunaan Teknik Digital.
Teknik Digital digunakan untuk menampilkan mengirim dan memproses informasi data menggunakan bilangan (biner). Hampir semua rangkaian digital direncanakan untuk beroperasi pada dua pernyataan dan berbentuk gelombang kotak (pulsa). Kalau dua pernyataan disamakan dengan tegangan maka akan didapat dua besaran tegangan yang berbeda pada dua pernyataan tersebut.
Pada umumnya rangkaian digital menggunakan komponen DTL (Dioda Transistor Logik), TTL (Transistor-Transistor Logik), dan CMOS (Complementry Metal Oxide Semiconductor). Rangkaian digital biasanya terdiri dari berbagai gerbang yang mempunyai fungsi logika yang berbeda. Tiap gerbang yang mempunyai satu atau lebih masukan dan keluaran .Yang paling penting dari gerbang-gerbang tersebut apa yang dinamakan dangan gerbang dasar (Basic Gates) terdiri dari gerbang fungsi logika DAN, ATAU, TIDAK (AND, OR, NOT Gates). Dengan menghubungkan gerbang-gerbang pada berbagai cara, bisa membangun rangkaian berfungsi Aritmatik atau fungsi lainnya sesuai dengan kemampuan intelegensi personalnya.
Kalau ditinjau lagi dua pernyataan pada teknik digital ini dalam kehidupan sehari - hari akan ditemui hal-hal sebagai berikut: 
 











        Ketika kita berbicara teknologi digital, maka sering pula kita dengar apa yang disebut teknologi analog. Berbeda dengan teknologi analog, maka tenologi digital hanya dikenal voltage tinggi (high) dan volatge rendah (low).    Pada perhitungan-perhitungan,  high diberikan simbol angka 1 dan low diberikan simbol angka 0.  Nah dalam teknologi digital ini kita akan ketemu dengan apa yang disebut dengan bilangan binary yang erat kaitannya dengan ilmu Aljabar Boolean. Apa yang disebut dengan bilangan Binary? 
  
Sistem bilangan biner atau sistem bilangan basis dua adalah sebuah sistem penulisan angka dengan menggunakan dua simbol yaitu 0 dan 1. Sistem bilangan biner modern ditemukan oleh Gottfried Wilhelm Leibniz pada abad ke-17. Sistem bilangan ini merupakan dasar dari semua sistem bilangan berbasis digital. Dari sistem biner, kita dapat mengkonversinya ke sistem bilangan Oktal atau Hexadesimal.    Sistem ini juga dapat kita sebut dengan istilah bit, atau Binary Digit. Pengelompokan biner dalam komputer selalu berjumlah 8, dengan istilah 1 Byte.   Dalam istilah komputer, 1 Byte = 8 bit. Kode-kode rancang bangun komputer, seperti ASCII, American Standard Code for Information Interchange menggunakan sistem peng-kode-an 1 Byte. Bilangan desimal yang dinyatakan sebagai bilangan biner akan berbentuk sebagai berikut  :  
 tabel-1.JPG     tabel2.JPGcontoh:mengubah bilangan desimal menjadi biner.  desimal = 10.   \Berdasarkan referensi diatas yang mendekati bilangan 10 adalah 8 (23), selanjutnya hasil pengurangan 10-8 = 2 (21). sehingga dapat dijabarkan seperti berikut:  10 = (1 x 23) + (0 x 22) + (1 x 21) + (0 x 20).   Dari perhitungan di atas bilangan biner dari 10 adalah 1010     Dapat juga dengan cara lain yaitu 10 : 2 = 5 sisa 0 (0 akan menjadi angka terakhir dalam bilangan biner), 5 (hasil pembagian pertama) : 2 = 2 sisa 1 (1 akan menjadi angka kedua terakhir dalam bilangan biner), 2 (hasil pembagian kedua): 2 = 1 sisa 0 (0 akan menjadi angka ketiga terakhir dalam bilangan biner), 1 (hasil pembagian ketiga): 2 = 0 sisa 1 (0 akan menjadi angka pertama dalam bilangan biner).   Karena hasil bagi sudah 0 atau habis, sehingga bilangan biner dari 10 = 1010   atau dengan cara yang singkat 10:2=5(0),5:2=2(1),2:2=1(0),1:2=0(1) sisa hasil bagi dibaca dari belakang menjadi 1010.  Bagaimana aplikasi bilangan binary dalam elektronika?   Coba kita lihat rangkaian transistor switching yang digambarkan sebagai berikut:      gambar-1.JPG gambar-1   Bila A di-ground (low), maka titik C mempunyai potensial yang tinggi (high), dan bila A diberi potensial (high), maka transistor tersebut akan menghantar sehingga potensial pada C akan kecil (low).  Dengan kata lain, bila A=0, maka C=1, sedangkan bila A=1, maka C=0.Nah dalam contoh tersebut maka circuit itu dinamakan inverter dan dalam teknologi digital disebut NOT-gate dan mempunyai simbol logic dan ekspresi Boolean sbb:   gambar-2.JPGgambar-2.  Bagaimana jika rangkaian tersebut terdiri dari 3 transistor  switching seperti gambar berikut ini:gambar-3.JPG Bila pada A adalah low dan pada B low, maka C1 high dan TR3 tidak menghantar, sehingga C pada low. Bila A adalah high dan B tetap low, maka C tetap pada posisi low demikian pula sebaliknya.  C akan menjadi high hanya bila A dan B kedua-duanya high.    Nah rangkaian atau circuit tersebut dinamakan AND-gate dengan simbol 
logic dan ekspresi Boolean sbb:  gambar-4.JPG      Coba kita perhatikan lagi gambar 3 diatas, pada rangkaian tersebut bisa juga C akan high bila salah satu A atau B dalam posisi high, maka bila terjadi hal demikian maka rangkaian tersebut dinamakan OR-gate dengan simbol logic dan ekspresi Boolean sbb:      gambar-5.JPG

Sebelum menjelajahi lebih lanjut tentang keuntungan satu sistim komunikasi terhadap sistim komunikasi yang lain, perlu dilakukan klarifikasi beberapa definisi penting. Sistim komunikasi analog adalah yang mentransmisikan sinyal-sinyal analog–yaitu time signal yang berada pada nilai kontinu pada interval waktu yang terdefinisikan. Jika time signal analog tersebut di-sample, maka yang terjadi adalah urutan bilangan-bilangan (nilai-nilai) yang harus ditransmisikan. Daftar nilai ini masih berupa nilai analog – yang bisa bernilai tak berhingga. Sistim ini belum digital. Kita katakan itu sebagai sistim diskrit terhadap waktu (discrete time) atau sistim ter-sampel (sampled system). Jika nilai-nilai tersampel tersebut dibuat menjadi himpunan diskrit (misalkan integer), maka sistim menjadi digital.
Beberapa sistem merupakan kombinasi hybrid baik digital maupun analog. Seperti saat mata kita menelusuri halaman ini, sistim psikologi kita beroperasi secara analog, seperti saat kita menatap gradasi dari sebuah gambar di halaman ini. Dasar dari sistem digital adalah, jika kita memprogram diri kita untuk mencari beberapa huruf, misalkan alphanumeric atau huruf-huruf Yunani dan symbol-simbol matematika. Selanjutnya, pada level yang lebih tinggi, kita membuka kamus komunikasi, yang berisi sekumpulan 30.000 an kemungkinan huruf. Ada kemungkinan huruf yang akan kita cari ada di dalam kamus tersebut, atau tidak ada. Jika huruf yang kita cari ada di kamus, berarti kita menerima huruf tadi de ngan benar, jika tidak ada, berarti kita menerima sesuatu yang salah. Dengan definisi di atas, kita mencoba mencari keuntungan dan kerugian sistim komunikasi digital dibandingkan dengan sistim analog.
Keuntungan Komunikasi Digital :
1. Error hampir selalu dapat dikoreksi.
2. Mudah menampilkan manipulasi sinyal (seperti encryption).
3. Range dinamis yang lebih besar (perbedaan nilai terendah terhadap tertinggi) dapat dimungkinkan.
Kerugian Komunikasi Digital :
1. Biasanya memerlukan bandwidth yang lebih besar.
2. Memerlukan sinkronisasi.
Gambar 1.2. menunjukkan kekontrasan hubungan antara sistim komunikasi analog dan sistim komunikasi digital. Pada sistim analog, terdapat amplifier di sepanjang jalur transmisi. Setiap amplifier menghasilkan penguatan (gain), baik menguatkan sinyal pesan maupun noise tambahan yang menyertai di sepanjang jalur transmisi tersebut. Pada sistim digital, amplifier digantikan regenerative repeater. Fungsi repeater selain menguatkan sinyal, juga “membersihkan” sinyal tersebut dari noise. Pada sinyal “unipolar baseband”, sinyal input hanya mempunyai dua nilai – 0 atau 1. Jadi repeater harus memutuskan, mana dari kedua kemungkinan tersebut yang boleh ditampilkan pada interval waktu tertentu, untuk menjadi nilai sesungguhnya di sisi terima.
Keuntungan kedua dari sistim komunikasi digital adalah bahwa kita berhubungan dengan nilai-nilai, bukan dengan bentuk gelombang. Nilai-nilai bisa dimanipulasi dengan rangkaian rangkaian logika, atau jika perlu, dengan mikroprosesor. Operasi-operasi matematika yang rumit bisa secara mudah ditampilkan untuk mendapatkan fungsi-fungsi pemrosesan sinyal atau keamanan dalam transmisi sinyal.
Keuntungan ketiga berhubungan dengan range dinamis. Kita dapat mengilustrasikan hubungan ini dalam sebuah contoh. Perekaman disk piringan hitam analog mempunyai masalah terhadap range dinamik yang terbatas. Suara-suara yang sangat keras memerlukan variasi bentuk alur yang ekstrim, dan sulit bagi jarum perekam untuk mengikuti variasi-variasi tersebut. Sementara perekaman secara digital tidak mengalami masalah, karena semua nilai amplitudo-nya, baik yang sangat tinggi maupun yang sangat rendah, ditransmisikan menggunakan urutan sinyal terbatas yang sama.
Namun di dunia ini tidak ada yang ideal, demikian pula halnya dengan sistim komunikasi digital. Kerugian sistim digital dibandingkan dengan sistim analog adalah, bahwa sistim digital memerlukan bandwidth yang besar. Sebagai contoh, sebuah kanal suara tunggal dapat ditransmisikan menggunakan single -sideband AM dengan bandwidth yang kurang dari 5 kHz. Dengan menggunakan sistim digital, untuk mentransmisikan sinyal yang sama, diperlukan bandwidth hingga empat kali dari sistim analog. Kerugian yang lain adalah selalu harus tersedia sinkronisasi. Ini penting bagi sistim untuk mengetahui kapan setiap simbol yang terkirim mulai dan kapan berakhir, dan perlu meyakinkan apakah setiap simbol sudah terkirim dengan benar.
Pneumatik merupakan teori atau pengetahuan tentang udara yang bergerak, keadaan-keadaan keseimbangan udara dan syarat-syarat keseimbangan. Perkataan pneumatik berasal bahasa Yunani “ pneuma “ yang berarti “napas” atau “udara”. Jadi pneumatik berarti terisi udara atau digerakkan oleh udara mampat. Pneumatik merupakan cabang teori aliran atau mekanika fluida dan tidak hanya meliputi penelitian aliran-aliran udara melalui suatu sistem saluran, yang terdiri atas pipa-pipa, selang-selang, gawai dan sebagainya, tetapi juga aksi dan penggunaan udara mampat.

Pneumatik menggunakan hukum-hukum aeromekanika, yang menentukan keadaan keseimbangan gas dan uap (khususnya udara atmosfir) dengan adanya gaya-gaya luar (aerostatika) dan teori aliran (aerodinamika). Pneumatik dalam pelaksanaan teknik udara mampat dalam industri merupakan ilmu pengetahuan dari semua proses mekanik dimana udara memindahkan suatu gaya atau gerakan. Jadi pneumatik meliputi semua komponen mesin atau peralatan, dalam mana terjadi proses-proses pneumatik. Dalam bidang kejuruan teknik pneumatik dalam pengertian yang lebih sempit lagi adalah teknik udara mampat (udara bertekanan).




Komponen-komponen Pneumatik

Komponen pneumatik beroperasi pada tekanan 8 s.d. 10 bar, tetapi dalam praktik dianjurkan beroperasi pada tekanan 5 s.d. 6 bar untuk penggunaan yang ekonomis.
Beberapa bidang aplikasi di industri yang menggunakan media pneumatik dalam hal penangan material adalah sebagai berikut :
a. Pencekaman benda kerja
b. Penggeseran benda kerja
c. Pengaturan posisi benda kerja
d. Pengaturan arah benda kerja

Penerapan pneumatik secara umum :
a. Pengemasan (packaging)
b. Pemakanan (feeding)
c. Pengukuran (metering)
d. Pengaturan buka dan tutup (door or chute control)
e. Pemindahan material (transfer of materials)
f. Pemutaran dan pembalikan benda kerja (turning and inverting of parts)
g. Pemilahan bahan (sorting of parts)
h. Penyusunan benda kerja (stacking of components)
i. Pencetakan benda kerja (stamping and embosing of components)

Susunan sistem pneumatik adalah sebagai berikut :
a. Catu daya (energi supply)
b. Elemen masukan (sensors)
c. Elemen pengolah (processors)
d. Elemen kerja (actuators)

1.1 Alasan Pemakaian Pneumatik
Persaingan antara peralatan pneumatik dengan peralatan mekanik, hidrolik atau elektrik makin menjadi besar. Dalam penggunaannya sistem pneumatik diutamakan karena beberapa hal yaitu :
a. paling banyak dipertimbangkan untuk beberapa mekanisasi,
b. dapat bertahan lebih baik terhadap keadaan-keadaan tertentu
Sering kali suatu proses tertentu dengan cara pneumatik, berjalan lebih rapi (efisien) dibandingkan dengan cara lainnya. Contoh :
1). Palu-palu bor dan keling pneumatik adalah jauh lebih baik dibandingkan dengan perkakas-perkakas elektrik serupa karena lebih ringan, lebih ada kepastian kerja dan lebih sederhana dalam pelayanan.
2). Pesawat-pesawat pneumatik telah mengambil suatu kedudukan monopoli yang penting pada :
a). rem-rem udara bertekanan untuk mobil angkutan dan gerbong-gerbong kereta api, alat-alat angkat dan alat-alat angkut.
b). pistol-pistol ( alat cat semprot, mesin-mesin peniup kaca, berbagai jenis penyejukan udara, kepala-kepala asah kecepatan tinggi ).

Udara bertekanan memiliki banyak sekali keuntungan, tetapi dengan sendirinya juga terdapat segi-segi yang merugikan atau lebih baik pembatasan-pembatasan pada penggunaannya. Hal-hal yang menguntungkan dari pneumatik pada mekanisasi yang sesuai dengan tujuan sudah diakui oleh cabang-cabang industri yang lebih banyak lagi. Pneumatik mulai digunakan untuk pengendalian maupun penggerakan mesin-mesin dan alat-alat.

1.2 Keuntungan Pemakaian Pneumatik
a. Merupakan media/fluida kerja yang mudah didapat dan mudah diangkut :
1). Udara dimana saja tersedia dalam jumlah yang tak terhingga.
2). Saluran-saluran balik tidak diperlukan karena udara bekas dapat dibuang bebas ke atmosfir, sistem elektrik dan hidrolik memerlukan saluran balik.
3). Udara bertekanan dapat diangkut dengan mudah melalui saluran-saluran dengan jarak yang besar, jadi pembuangan udara bertekanan dapat dipusatkan dan menggunakan saluran melingkar semua pemakai dalam satu perusahaan dapat dilayani udara bertekanan dengan tekanan tetap dan sama besarnya. Melalui saluran-saluran cabang dan pipa-pipa selang, energi udara bertekanan dapat disediakan dimana saja dalam perusahaan.

b. Dapat disimpan dengan mudah :
1). Sumber udara bertekanan ( kompresor ) hanya menyerahkan udara bertekanan kalau udara bertekanan ini memang digunakan. Jadi kompresor tidak perlu bekerja seperti halnya pada pompa peralatan hidrolik.
2). Pengangkutan ke dan penyimpanan dalam tangki-tangki penampung juga dimungkinkan.
3). Suatu daur kerja yang telah dimulai selalu dapat diselesaikan, demikian pula kalau penyediaan listrik tiba-tiba dihentikan.

c. Bersih dan kering :
1). Udara bertekanan adalah bersih. Kalau ada kebocoran pada saluran pipa, benda-benda kerja maupun bahan-bahan disekelilingnya tidak akan menjadi kotor.
2). Udara bertekanan adalah kering. Bila terdapat kerusakan pipa-pipa tidak akan ada pengotoran-pengotoran, bintik minyak dansebagainya.
3). Dalam industri pangan , kayu , kulit dan tenun serta pada mesin-mesin pengepakan hal yang memang penting sekali adalah bahwa peralatan tetap bersih selama bekerja.
Sistem pneumatik yang bocor bekerja merugikan dilihat dari sudut ekonomis, tetapi dalam keadaan darurat pekerjaan tetap dapat berlangsung. Tidak terdapat minyak bocoran yang mengganggu seperti pada sistem hidrolik.

d. Tidak peka terhadap suhu
1). Udara bersih ( tanpa uap air ) dapat digunakan sepenuhnya pada suhu-suhu yang tinggi atau pada nilai-nilai yang rendah, jauh di bawah titik beku ( masing-masing panas atau dingin ).
2). Udara bertekanan juga dapat digunakan pada tempat-tempat yang sangat panas, misalnya untuk pelayanan tempa tekan, pintu-pintu dapur pijar, dapur pengerasan atau dapur lumer.
3). Peralatan-peralatan atau saluran-saluran pipa dapat digunakan secara aman dalam lingkungan yang panas sekali, misalnya pada industri-industri baja atau bengkel-bengkel tuang (cor).

e. Aman terhadap kebakaran dan ledakan
1). Keamanan kerja serta produksi besar dari udara bertekanan tidak mengandung bahaya kebakaran maupun ledakan.
2). Dalam ruang-ruang dengan resiko timbulnya kebakaran atau ledakan atau gas-gas yang dapat meledak dapat dibebaskan, alat-alat pneumatik dapat digunakan tanpa dibutuhkan pengamanan yang mahal dan luas. Dalam ruang seperti itu kendali elektrik dalam banyak hal tidak diinginkan.

f. Tidak diperlukan pendinginan fluida kerja
1). Pembawa energi (udara bertekanan) tidak perlu diganti sehingga untuk ini tidak dibutuhkan biaya. Minyak setidak-tidaknya harus diganti setelah 100 sampai 125 jam kerja.

g. Rasional (menguntungkan)
1). Pneumatik adalah 40 sampai 50 kali lebih murah daripada tenaga otot. Hal ini sangat penting pada mekanisasi dan otomatisasi produksi.
2). Komponen-komponen untuk peralatan pneumatik tanpa pengecualian adalah lebih murah jika dibandingkan dengan komponen-komponen peralatan hidrolik.

h. Kesederhanaan (mudah pemeliharaan)
1). Karena konstruksi sederhana, peralatan-peralatan udara bertekanan hampir tidak peka gangguan.
2). Gerakan-gerakan lurus dilaksanakan secara sederhana tanpa komponen mekanik, seperti tuas-tuas, eksentrik, cakera bubungan, pegas, poros sekerup dan roda gigi.
3). Konstruksinya yang sederhana menyebabkan waktu montase (pemasangan) menjadi singkat, kerusakan-kerusakan seringkali dapat direparasi sendiri, yaitu oleh ahli teknik, montir atau operator setempat.
4). Komponen-komponennya dengan mudah dapat dipasang dan setelah dibuka dapat digunakan kembali untuk penggunaan-penggunaan lainnya.

i. Sifat dapat bergerak
1). Selang-selang elastik memberi kebebasan pindah yang besar sekali dari komponen pneumatik ini.

j. Aman
1). Sama sekali tidak ada bahaya dalam hubungan penggunaan pneumatik, juga tidak jika digunakan dalam ruang-ruang lembab atau di udara luar. Pada alat-alat elektrik ada bahaya hubungan singkat.

k. Dapat dibebani lebih ( tahan pembebanan lebih )
Alat-alat udara bertekanan dan komponen-komponen berfungsi dapat ditahan sedemikian rupa hingga berhenti. Dengan cara ini komponen-komponen akan aman terhadap pembebanan lebih. Komponen-komponen ini juga dapat direm sampai keadaan berhenti tanpa kerugian.
1). Pada pembebanan lebih alat-alat udara bertekanan memang akan berhenti, tetapi tidak akan mengalami kerusakan. Alat-alat listrik terbakar pada pembebanan lebih.
2). Suatu jaringan udara bertekanan dapat diberi beban lebih tanpa rusak.
3). Silinder-silinder gaya tak peka pembebanan lebih dan dengan menggunakan katup-katup khusus maka kecepatan torak dapat disetel tanpa bertingkat.

l. Jaminan bekerja besar
Jaminan bekerja besar dapat diperoleh karena :
1). Peralatan serta komponen bangunannya sangat tahan aus.
2). Peralatan serta komponen pada suhu yang relatif tinggi dapat digunakan sepenuhnya dan tetap demikian.
3). Peralatan pada timbulnya naik turun suhu yang singkat tetap dapat berfungsi.
4). Kebocoran-kebocoran yang mungkin ada tidak mempengaruhi ketentuan bekerjanya suatu instalasi.

m. Biaya pemasangan murah
1). Mengembalikan udara bertekanan yang telah digunakan ke sumbernya (kompresor) tidak perlu dilakukan. Udara bekas dengan segera mengalir keluar ke atmosfir, sehingga tidak diperlukan saluran-saluran balik, hanya saluran masuk saja.
2). Suatu peralatan udara bertekanan dengan kapasitas yang tepat, dapat melayani semua pemakai dalam satu industri. Sebaliknya, pengendalian-pengendalian hidrolik memerlukan sumber energi untuk setiap instalasi tersendiri (motor dan pompa).

n. Pengawasan (kontrol)
1). Pengawasan tekanan kerja dan gaya-gaya atas komponen udara bertekanan yang berfungsi dengan mudah dapat dilaksanakan dengan pengukur-pengukur tekanan (manometer).

o. Fluida kerja cepat
1). Kecepatan-kecepatan udara yang sangat tinggi menjamin bekerjanya elemen-elemen pneumatik dengan cepat. Oleh sebab itu waktu menghidupkan adalah singkat dan perubahan energi menjadi kerja berjalan cepat.
2). Dengan udara mampat orang dapat melaksanakan jumlah perputaran yang tinggi ( Motor Udara ) dan kecepatan-kecepatan piston besar (silinder-silinder kerja ).
3). Udara bertekanan dapat mencapai kecepatan alir sampai 1000 m/min (dibandingkan dengan energi hidrolik sampai 180 m/min ).
4). Dalam silinder pneumatik kecepatan silinder dari 1 sampai 2 m/detik mungkin saja ( dalam pelaksanaan khusus malah sampai 15 m/detik ).
5). Kecepatan sinyal-sinyal kendali pada umumnya terletak antara 40 dan 70 m/detik (2400 sampai 4200 m/min)

p. Dapat diatur tanpa bertingkat
1). Dengan katup pengatur aliran, kecepatan dan gaya dapat diatur tanpa bertingkat mulai dari suatu nilai minimum (ditentukan oleh besarnya silinder) sampai maksimum (tergantung katup pengatur yang digunakan).
2). Tekanan udara dengan sederhana dan kalau dibutuhkan dalam keadaan sedang bekerja dapat disesuaikan dengan keadaan.
3). Beda perkakas rentang tenaga jepitnya dapat disetel dengan memvariasikan tekanan udara tanpa bertingkat dari 0 sampai 6 bar.
4). Tumpuan-tumpuan dapat disetel guna mengatur panjang langkah silinder kerja yang dapat disetel terus-menerus (panjang langkah ini dapat bervariasi sembarang antara kedua kedudukan akhirnya).
5). Perkakas-perkakas pneumatik yang berputar dapat diatur jumlah putaran dan momen putarnya tanpa bertingkat.

q. Ringan sekali
Berat alat-alat pneumatik jauh lebih kecil daripada mesin yang digerakkan elektrik dan perkakas-perkakas konstruksi elektrik (hal ini sangat penting pada perkakas tangan atau perkakas tumbuk). Perbandingan berat (dengan daya yang sama) antara :
• motor pneumatik : motor elektrik = 1 : 8 (sampai 10)
• motor pneumatik : motor frekuensi tinggi = 1 : 3 (sampai 4)

r. Kemungkinan penggunaan lagi (ulang)
Komponen-komponen pneumatik dapat digunakan lagi, misalnya kalau komponen-komponen ini tidak dibutuhkan lagi dalam mesin tua.
r. Konstruksi kokoh
Pada umumnya komponen pneumatik ini dikonstruksikan secara kompak dan kokoh, dan oleh karena itu hampir tidak peka terhadap gangguan dan tahan terhadap perlakuan-perlakuan kasar.

s. Fluida kerja murah
Pengangkut energi (udara) adalah gratis dan dapat diperoleh senantiasa dan dimana saja. Yang harus dipilih adalah suatu kompresor yang tepat untuk keperluan tertentu; jika seandainya kompresor yang dipilih tidak memenuhi syarat, maka segala keuntungan pneumatik tidak ada lagi.

1.3 Kerugian / terbatasnya Pneumatik
a. Ketermampatan (udara).
Udara dapat dimampatkan. Oleh sebab itu adalah tidak mungkin untuk mewujudkan kecepatan-kecepatan piston dan pengisian yang perlahan-lahan dan tetap, tergantung dari bebannya.
Pemecahan :
• kesulitan ini seringkali diberikan dengan mengikutsertakan elemen hidrolik dalam hubungan bersangkutan, tertama pada pengerjaan-pengerjaan cermat ( bor, bubut atau frais ) hal ini merupakan suatu alat bantu yang seringkali digunakan.

b. Gangguan Suara (Bising)
Udara yang ditiup ke luar menyebabkan kebisingan (desisan) mengalir ke luar, terutama dalam ruang-ruang kerja sangat mengganggu.
Pemecahan :
• dengan memberi peredam suara (silincer)

c. Kegerbakan (volatile)
Udara bertekanan sangat gerbak (volatile). Terutama dalam jaringan-jaringan udara bertekanan yang besar dan luas dapat terjadi kebocoran-kebocoran yang banyak, sehingga udara bertekanan mengalir keluar. Oleh karena itu pemakaian udara bertekanan dapat meningkat secara luar biasa dan karenanya harga pokok energi “berguna” sangat tinggi.
Pemecahan :
• dapat dilakukan dengan menggunakan perapat-perapat berkualitas tinggi.

d. Kelembaban udara
Kelembaban udara dalam udara bertekanan pada waktu suhu menurun dan tekanan meningkat dipisahkan sebagai tetesan air (air embun).
Pemecahan :
• penggunaan filter-filter untuk pemisahan air embun (dan juga untuk penyaring kotoran-kotoran).

e. Bahaya pembekuan
Pada waktu pemuaian tiba-tiba (dibelakang pemakai udara bertekanan) dan penurunan suhu yang bertalian dengan pemuaian tiba-tiba ini, dapat terjadi pembentukan es.
Pemecahan :
• Batasi pemuaian udara bertekanan dalam perkakas-perkakas pneumatik.
• Biarkan udara memuai sepenuhnya pada saat diadakan peniupan ke luar.

f. Kehilangan energi dalam bentuk kalor.
Energi kompresi adiabatik dibuang dalam bentuk kalor dalam pendingin antara dan akhir. Kalor ini hilang sama sekali dan kerugian ini hampir tidak dapat dikurangi.

g. Pelumasan udara bertekanan
Oleh karena tidak adanya sistem pelumasan untuk bagian-bagian yang bergerak, maka bahan pelumas ini dimasukkan bersamaan dengan udara yang mengalir, untuk itu bahan pelumas harus dikabutkan dalam udara bertekanan.

h. Gaya tekan terbatas
1). Dengan udara bertekanan hanya dapat dibangkitkan gaya yang terbatas saja. Untuk gaya yang besar, pada tekanan jaringan normal dibutuhkan diameter piston yang besar.
2). Penyerapan energi pada tekanan-tekanan kejutan hidrolik dapat memberi jalan keluar.

i. Ketidakteraturan
Suatu gerakan teratur hampir tidak dapat diwujudkan :
1). Pada pembebanan berganti-ganti
2). Pada kecepatan-kecepatan kecil (kurang dari 0,25 cm/det) dapat timbul ‘stick-slip effect’.

j. Tidak ada sinkronisasi
Menjalankan dua silinder atau lebih paralel sangat sulit dilakukan.

k. Biaya energi tinggi
Biaya produksi udara bertekanan adalah tinggi. Oleh karena itu untuk produksi dan distribusi dibutuhkan peralatan-peralatan khusus. Setidak-tidaknya biaya ini lebih tinggi dibandingkan dengan penggerak elektrik.
Perbandingan biaya ( tergantung dari cara penggerak ) :
• Elektrik : Pneumatik = 1 : 10 (sampai 12)
• Elektrik : Hidrolik = 1 : 8 (sampai 10)
• Elektrik : Tangan = 1 : 400 (sampai 500)

1.4 Pemecahan Kerugian Pneumatik
Pada umumnya, hal-hal yang merugikan dapat dikurangi atau dikompensasi dengan :
a. Peragaman yang cocok dari komponen-komponen maupun alat pneumatik.
b. Pemilihan sebaik mungkin sistem pneumatik yang dibutuhkan.
c. Kombinasi yang sesuai dengan tujuannya dari berbagai sistem penggerakan dan pengendalian (elektrik, pneumatik dan hidrolik).
(Sumber Drs. Sudaryono, VEDC Malang)
(InsyaAllah DIsambung lagi nanti. mohon maaf jika ada kesalahan)
 
Copyright (c) 2010 AGUNG WAHYUDI [ Mechanical Control 37" ]. Design by Wordpress Themes.

Themes Lovers, Download Blogger Templates And Blogger Templates.